Prepares a data.frame object for use with the ERF (not needed if using erf())

A data.frame with a new first column of var as a binary factor (duplicated if duplicate=TRUE), the header and covariates columns, and a random variable column

erf_data_prep(
  df = NULL,
  var = NULL,
  covariates = NULL,
  header = NULL,
  weights = NULL,
  duplicate = TRUE,
  mode = "bin"
)

Arguments

df

A data.frame object

var

A character string indicating the column name of the data frame that contains the number of interactions for the ERF to model; column should be a numeric column

covariates

A character vector indicating the column name(s) of the data frame that contain the covariates

header

A character vector indicating the column name(s) of the data frame that contain the additional columns you wish appended to the output

weights

a vector equal in length to nrow(df) of weights, NULL by default

duplicate

A logical flag that indicates whether to duplicate observations with more than one interaction. Default is TRUE to duplicate all records that interacted with more than one individual (i.e. a fishing set that caught two of the same species)

Examples

data <- erf_data_prep(df = simData$samples, var = 'obs', covariates = grep('cov', colnames(simData$samples), value=TRUE), header = c('prob.raw','prob'))
head(data)
#>   obs   prob.raw      prob        cov1        cov2       cov3        cov4
#> 1   0 -0.2525018 0.4372078 -0.07158000 -0.27811766  0.5741324  0.01366734
#> 2   0  2.7156166 0.9379419 -0.12028137  0.26103341 -0.2298234  0.14750795
#> 3   0  0.5609232 0.6366661  0.12422049  0.09052045 -0.3070963  0.14493653
#> 4   0  0.2723824 0.5676777 -0.12481261 -0.29583389  0.6282519  0.06067430
#> 5   0  3.0913999 0.9565366  0.01361460 -0.04989738  0.1600218  0.42189437
#> 6   0 -2.1467836 0.1046322  0.01842766  0.18300638 -0.3421439 -0.33128857
#>          cov5     random
#> 1 -0.15537696 -0.3647314
#> 2  0.32482174  1.3904656
#> 3  0.02303010 -2.3638196
#> 4 -0.25240678 -0.2992857
#> 5  0.13166581  1.7098621
#> 6  0.07998399 -0.6688155